Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose Microscope, a new framework that addresses growing security issues in System-on-Chip (SoC) designs due to their complexity and involvement of third-party vendors. Traditional methods are inadequate for identifying software-exploited hardware vulnerabilities, and existing solutions for hardware-software co-verification often fall short. The framework has been proven effective through extensive testing on SoC benchmarks, and it has outperformed existing methods and commercial tools in comparative analyses. Index Terms—Causality Inference, Hardware Security,more » « less
-
We propose Microscope, a new framework that addresses growing security issues in System-on-Chip (SoC) designs due to their complexity and involvement of third-party vendors. Traditional methods are inadequate for identifying softwareexploited hardware vulnerabilities, and existing solutions for hardware-software co-verification often fall short. The framework has been proven effective through extensive testing on SoC benchmarks and it has outperformed existing methods and commercial tools in comparative analyses.more » « less
-
The increasing complexity of System-on-Chip (SoC) designs and the rise of third-party vendors in the semiconductor industry have led to unprecedented security concerns. Traditional formal methods struggle to address software-exploited hardware bugs, and existing solutions for hardware-software co-verification often fall short. This paper presents Microscope, a novel framework for inferring software instruction patterns that can trigger hardware vulnerabilities in SoC designs. Microscope enhances the Structural Causal Model (SCM) with hardware features, creating a scalable Hardware Structural Causal Model (HW-SCM). A domain-specific language (DSL) in SMT-LIB represents the HW-SCM and predefined security properties, with incremental SMT solving deducing possible instructions. Microscope identifies causality to determine whether a hardware threat could result from any software events, providing a valuable resource for patching hardware bugs and generating test input. Extensive experimentation demonstrates Microscope's capability to infer the causality of a wide range of vulnerabilities and bugs located in SoC-level benchmarks.more » « less
An official website of the United States government

Full Text Available